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ABSTRACT 

Ensuring privacy in machine learning through collaborative data sharing is 
imperative for organizations aiming to leverage collective data without 
compromising confidentiality. This becomes particularly crucial when sensitive 
information must be safeguarded throughout the entire machine learning process, 
spanning from model training to inference. This paper introduces a novel 
framework employing Representation Learning through autoencoders to produce 
privacy-preserving embedded data. Consequently, organizations can share these 
representations, fostering improved performance of machine learning mod
scenarios involving multiple data sources for a unified predictive task 
downstream. 
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Introduction 

Collaborative data sharing strategies within Artificial Intelligence (AI) frameworks have become commonplace 
among organizations aiming to enhance prediction model performance and fortify data reliability, thus gaining 
competitive advantages [1]. However, in real-world scenarios, data sharing processes may encounter obstacles due 
to privacy policies or intellectual property regulations, notwithstanding the safety of communication infrastructures 
between peers [2]. Consider, for instance, two companies each possessing distinct sets of variables pertaining to the 
same group of users. While these peers could potentially leverage complementary information from one another to 
predict a response variable and inform decision-making processes, the presence of sensitive user data on both ends 
often precludes data sharing, thereby hindering potential model performance improvements. Consequently, devising 
strategies to facilitate information sharing without compromising predictive capabilities is essential for ML model 
development within such organizations. 

 

In response to this challenge, academia and private entities have devised various solutions and frameworks 
facilitating data sharing through technological and machine learning approaches. Many of these approaches rely on 
cryptographic techniques (e.g., homomorphic encryption [3, 4]), data perturbation methods (e.g., differential privacy 
[5], local differential privacy [6], dimensionality reduction [7]), and distributed architectures (e.g., federated 
learning) [8, 9]. Notably, these solutions primarily focus on preserving privacy during communication, altering 
individual observation patterns, and often entail high maintenance requirements. Consequently, our focus lies in 
constructing a privacy-preserving framework utilizing recent advancements in deep learning models to enable 
collaborative peers to share data without compromising the predictive power of the original features. 

 

This paper introduces an innovative framework harnessing representation learning through auto-encoders to 
generate privacy-preserving embeddings of sensitive information, facilitating collaboration among multiple data 
sources in the development of trustworthy machine learning models. Additionally, we apply the proposed 
framework to three distinct scenarios to assess its practical applicability. The structure of this work can be 
summarized as follows: Firstly, we survey existing case studies on privacy-preserving machine learning to discern 
their limitations and identify avenues for improvement. Subsequently, we delve into the proposed methodology, 
outlining the key stages of the general process for method validation. Following this, we introduce and elaborate on 
the selected case studies, presenting their respective outcomes. Finally, we offer conclusions and insights for future 
research directions. 

 

Background 

 

Given our proposed method's novelty in privacy-preserving machine learning for collaborative model development 
utilizing deep-learning autoencoders, it's essential to review traditional privacy-preserving approaches and 
representation learning to ascertain their potential integration as a solution to our addressed problem. 

 

Privacy-preserving Machine Learning 

Privacy-preserving machine learning resides within the AI ecosystem and aims to reconcile data ownership rights 
with the advantages of employing machine learning models with said data. These models can safeguard either the 
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data itself or the developed model [10]. As our strategy aims to facilitate secure data sharing among peers, we will 
delve into data-oriented privacy guarantee applications. 

Three primary traditional approaches exist for addressing privacy-preserving ML. Firstly, Encryption-Based 
Privacy-Preserving methods transform the feature set into ciphertext, thwarting data leakage between peers [11]. 
Despite the security merits, like those provided by Homomorphic Encryption, these solutions encounter limitations 
in real-world scenarios due to technological requirements. Architecture-based approaches, such as Federated 
Learning, create decentralized model development pipelines with data distributed across multiple peers, suitable 
when contributors share common information but inadequate when peers possess disparate datasets [12]. 

The third traditional approach involves perturbing original features, with differential privacy being a prevalent 
strategy leveraging data distribution to obscure individual observation values [13]. However, this method may 
introduce substantial noise, diminishing data utility. Alternatively, dimensionality reduction techniques preserve 
variance while obfuscating original features. 

Principal Component Analysis is one such technique that generates a representation vector of the data, which can 
then be utilized in downstream models of interest. Nonetheless, linear transformations for dimensionality reduction 
may overlook certain data relationships. Nguyen et al. [9] employed representation learning in their work 
"AutoGAN-based Dimension Reduction for Privacy Preservation" to encode image privacy and integrate the 
embeddings into anomaly detection. 

Representation Learning 

Representation Learning, a domain within Deep Learning, enables algorithms to automatically learn representations 
of input data. Widely applied in diverse data types like images, speech, or text, its uses encompass anomaly 
detection, pattern recognition, and dimensionality reduction. Autoencoders, specific neural networks, encode input 
data and reconstruct the original dataset with minimal error [14]. Consisting of encoder and decoder structures, they 
are linked via the latent space representation, an embedded vector of the original data [15]. 

 

Representation Learning serves as a principal dimensionality reduction strategy, structuring a supervised machine 
learning model that seeks optimal nonlinear feature combinations representing the original data [16]. Consequently, 
the latent space representation forms an abstract multidimensional space encoding the original feature set while 
preserving proximity between similar observations. 

 

Privacy-preserving and representation learning intersect as complementary research areas. Representation learning 
offers a deep learning strategy for encoding data while retaining core information and observation representation. 
This combination enables the achievement of our primary objective: fostering trustful data sharing among 
collaborative peers for machine learning model development. 

  

Privacy-Preserving Machine Learning for Collaborative Data Sharing via Auto-encoder Latent Space 
Embeddings 

 

Our proposed method advocates for leveraging representation learning to embed data as a privacy-preserving 
strategy, enabling multiple peers to share data without compromising predictive power. Demonstrating the efficacy 
of this approach in facilitating trustworthy data sharing while maintaining predictive model performance expands 
the horizons of AI collaboration practices for organizations. Illustrated in Figure 1, our framework accommodates 
multiple data sources eager to contribute to one another by sharing data while upholding the privacy of sensitive 
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information. Notably, collaboration revolves around enhancing the feature set of an observation identified by a 
standard ID. 

 

In conventional data-sharing pipelines for training collaborative machine learning models, both ends typically 
contribute by sharing raw datasets, which are then merged using a standard ID across all observations. Following 
appropriate data preprocessing, one or both peers may train a machine-learning model using the augmented feature 
set, thereby potentially enhancing predictive power over the target variable. In contrast to this conventional 
approach, our method introduces an additional step preceding data merging. Here, peers generate a latent space 
representation of their original data, effectively producing an obfuscated dataset primed for sharing. Consequently, 
peers integrate these data representations to jointly train a supervised downstream task aimed at predicting the same 
target variable without sacrificing predictive power, with the aim of improving overall performance through data 
sharing. 

 

Initially scoped for two peers, our method holds potential for scalability to accommodate more collaborators. 
Furthermore, we assume that involved peers will share representations of the entire feature set. However, in real-
world applications, both peers may not necessarily need to implement privacy-preserving strategies. 

 

Evaluation 

Data Sets 

To assess the effectiveness of our proposed framework and to simulate real-life scenarios, we curated three public 
datasets: House Pricing [17], Mnist Numbers [18], and Buzz in Social Media [19]. These datasets were chosen to 
evaluate the framework's performance across various characteristics and to encompass potential scenarios 
encountered in practical applications, ensuring the generality of our framework. Consequently, we encompass both 
regression and classification prediction tasks, thus ensuring comprehensive testing. Furthermore, we deliberately 
considered variations in feature dimensions and types to encompass diverse downstream tasks, dimensions, and 
feature types, thereby evaluating the robustness and scalability of our solution. 
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 Experiments 

We established a baseline model devoid of privacy
scenarios to ensure dependable and comparable results, as delineated in Section 3.

 

Scenario 0 | Baseline: This scenario entails training a predictive model for the downstream tas
source, denoted as the raw dataset herein. Employing a traditional supervised machine learning model, we 
incorporate randomized search as a hyperparameter tuning strategy. The performance of this baseline model serves 
as the benchmark against which subsequent scenarios are evaluated.

 

Scenario 1 | Representation Learning with a Single Shared Autoencoder: Here, we preprocess a unified dataset to 
derive a single representation vector, utilizing it to train a predictive model for the down
evaluates the predictive performance facilitated by an accurate representation.

 

Scenario 2 | Representation Learning with Individual Autoencoders: This scenario simulates two peers by 
partitioning the initial dataset and individ
Subsequently, to train the predictive model for the downstream task, we combine these vectors using the 
observations' IDs. 
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devoid of privacy-preserving strategies and four distinct privacy
scenarios to ensure dependable and comparable results, as delineated in Section 3. 

Scenario 0 | Baseline: This scenario entails training a predictive model for the downstream task using a single data 
source, denoted as the raw dataset herein. Employing a traditional supervised machine learning model, we 
incorporate randomized search as a hyperparameter tuning strategy. The performance of this baseline model serves 

against which subsequent scenarios are evaluated. 

Scenario 1 | Representation Learning with a Single Shared Autoencoder: Here, we preprocess a unified dataset to 
derive a single representation vector, utilizing it to train a predictive model for the downstream task. This scenario 
evaluates the predictive performance facilitated by an accurate representation. 

Scenario 2 | Representation Learning with Individual Autoencoders: This scenario simulates two peers by 
partitioning the initial dataset and individually preprocessing them to obtain a representation vector for each source. 
Subsequently, to train the predictive model for the downstream task, we combine these vectors using the 
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Subsequently, to train the predictive model for the downstream task, we combine these vectors using the 
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Figure 2: General Autoencoder Structure for Training Phase and Explored Scenarios 

 

We devised the following two scenarios considering the hypothesis that the autoencoder could adopt a non-naive 
approach during latent space representation estimation, potentially enhancing downstream task metrics. 

 

Scenario 3 | Representation Learning with Shared Autoencoder Non-naive Approach: This scenario assesses the 
downstream task's impact when the autoencoder model incorporates the predictive variable in the principal model. 
We modify the autoencoder, transforming it into a multitask neural network that predicts representation performance 
and the objective variable simultaneously. Given that both peers have access to the predictive variable, we replicate 
the second scenario but update the encoder stage accordingly. 

 

Scenario 4 | Representation Learning with Individual Autoencoder Non-naive Approach: Similarly, this scenario 
evaluates the downstream task's impact when the autoencoder model integrates the predictive variable in the 
principal model. We adapt the autoencoder into a multitask neural network predicting representation performance 
and the objective variable concurrently. Following the same rationale as Scenario 3, we update the encoder stage of 
the process as described above. 

 

Experimental Setup 

Autoencoder Setup: We employed the Tensorflow framework to construct the Autoencoder Neural Network. 
Maintaining consistency across all experiments, we standardized the network's structure to draw conclusions 
regarding the general framework rather than the network's complexity. The Autoencoder model comprises two main 
components: the encoder and decoder, each composed of four layers, with the latent space representation layer 
serving as the connection between them. Figure 3 depicts the overall Autoencoder structure, where N represents the 
original feature size, and M represents the embedding size. 

Encoder: The encoder consists of four layers. The input layer accommodates neurons equivalent to the features of 
the original dataset (N). Subsequently, three hidden layers conduct nonlinear transformations with dimensionality 
reduction between each layer, culminating in the final layer—the latent space representation. We determined the 
dimensions as N for the input layer, [128, 64, 40] for the hidden layers, and M for the latent space representation 
size. 

Decoder: Mirroring the encoder, the decoder initiates its structure from the latent space representation size (M). 
Subsequently, three layers replicate the encoder's design in reverse to attain the final layer, corresponding to the 
original feature size (N). We selected dimensions as M for the input layer, [128, 64, 40] for the hidden layers, and N 
for the final output size. 
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Additional Considerations: Due to the nature of the input data utilized in our framework, we employed ReLU as the 
activation function for every layer. Furthermore, considering the scaling of input data, we opted for Mean Absolute 
Error as the loss function for the Autoencoder. Lastly, we adopted an Adam Optimizer with a learning rate set to 
0.0001. 

 

Results 

 

Encoding Performance with Shared Autoencoder 

We trained the autoencoder model using complete datasets to evaluate various scenarios as previously discussed. 
Representation accuracy was assessed using the autoencoder model's loss function, supplemented by the metric of 
average correctly estimated observations per feature, defined as observations with less than 5% Mean Absolute 
Percentage Error (MAPE). For the House Pricing dataset, the representation error is 5%, with an average estimated 
observations per feature rate of 98%. In the case of Mnist, the representation error is 7%, with an average estimated 
observations per feature rate of 96%. Lastly, for Buzz in Social Media, the representation error is 6%, with an 
average estimated observations per feature rate of 97%. 

Individual Autoencoders 

We trained a separate autoencoder model for each simulated data source to explore the aforementioned scenarios. 
Similar to the shared autoencoder approach, representation accuracy was assessed using the autoencoder model's 
loss function, alongside the metric of average correctly estimated observations per feature. For the House Pricing 
dataset, the average representation error is 11%, with an average estimated observations per feature rate of 86%. 
Regarding Mnist, the average representation error is 9%, with an average estimated observations per feature rate of 
94%. For Buzz in Social Media, the representation error is 8%, with an average estimated observations per feature 
rate of 94%. 

 Representation Learning - House Pricing Framework 

In this experiment, the downstream task involves estimating the price of a house in USD based on certain 
characteristics. To predict this task, we utilize an XGBoostRegressor model. Moreover, we incorporate 
hyperparameter tuning using Randomized Search Cross Validation, considering the following parameters: learning 
rate, max depth, min child weight, gamma, and colsamplebytree. 



383Vinayak Raja, BHUVI chopra 

 

The findings indicate that despite the dimensionality augmentation necessitated by the dataset's limited feature 
count, the latent space representation exhibits minimal loss in predictive power. Furthermore, the downstream model 
retains its ability to accurately predict the objective variable. In scenarios where the principal dataset simulates two 
data sources, employing both latent space representations yields performance levels comparable to those observed in 
Scenario 1. 

Mnist Numbers 

In this experiment, the downstream task involves predicting which number, ranging from 0 to 9, corresponds to an 
image. To accomplish this task, we utilize a Multinomial Logistic Regression model. Notably, for this specific case, 
we preprocess the images to convert them into tabu

 

In this paper, we introduce an alternative solution to traditional privacy
demonstrating that with an accurate representation learning mode
maintains the patterns and behavior of the original observations. Transitioning from original features to a latent 
space representation does not significantly degrade the performance of downstream tasks. In our e
results experienced a decrease of less than 10 percentage points, with representation errors ranging from 5% to 11%. 
Consequently, peers or organizations can collaborate without compromising organizational privacy policies or 
infringing upon potential clients' privacy concerns.

 

For future considerations, each data source should develop a customized autoencoder neural network 
implementation to enhance representation performance and ensure alignment with dataset requirements. 
Additionally, despite assuming that dimensionality reduction preserves data privacy, we aim to develop metrics for 
quantifying the privacy level of each dataset. These metrics will consider the complexity of the embedding and the 
difficulty for potential attackers to decode the original dataset. Finally, we intend to validate this framework using 
organizational data from various sources to draw conclusions regarding real
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