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             ABSTRACT 

 
The integration of Artificial Intelligence (AI) and Machine Learning (ML) 
into semiconductor manufacturing has revolutionized defect detection 
and yield improvement processes. AI and ML algorithms analyze vast 
amounts of data generated during fabrication to enhance quality control, 
reduce defects, and optimize production yields. This paper provides an 
overview of AI and ML applications in semiconductor manufacturing, 
focusing on their roles in defect detection methodologies, process 
optimization, and yield enhancement strategies. Case studies and cu
advancements illustrate the transformative impact of AI and ML 
technologies on semiconductor fabrication, highlighting their potential to 
drive future advancements in microelectronics. 
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Introduction: 

 

 

Semiconductor manufacturing stands at the forefront of technological innovation, driving advancements 
in computing, communication, and electronics industries. As demands for higher performance and 
reliability in semiconductor devices continue to rise, so too do the challenges associated with maintaining 
stringent quality standards and optimizing production yields. In response to these challenges, the 
integration of Artificial Intelligence (AI) and Machine Learning (ML) has emerged as a transformative 
force in semiconductor fabrication. 

 

AI and ML technologies enable semiconductor manufacturers to harness the power of data-driven insights 
to enhance defect detection capabilities, optimize manufacturing processes, and improve overall yield 
rates. By leveraging AI algorithms, which excel in pattern recognition and anomaly detection, alongside 
ML models capable of predictive analytics and continuous learning, manufacturers can identify subtle 
defects, predict equipment failures, and fine-tune production parameters in real-time. 

 

This paper explores the multifaceted applications of AI and ML in semiconductor manufacturing, 
focusing on their pivotal roles in defect detection and yield improvement strategies. Through case studies 
and current research advancements, the effectiveness of AI and ML in addressing critical manufacturing 
challenges is demonstrated, underscoring their potential to propel the semiconductor industry into a new 
era of efficiency and innovation. 

 

 

objectives 
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1. Enhance Defect Detection Accuracy: Evaluate how AI and ML technologies can improve the accuracy 
and speed of defect detection in semiconductor manufacturing processes compared to traditional methods. 

 

2. Optimize Yield Rates: Investigate the effectiveness of AI and ML algorithms in optimizing yield rates 
by identifying and mitigating production inefficiencies, reducing scrap, and minimizing rework. 

 

3. Evaluate Real-Time Application: Assess the feasibility and benefits of implementing AI and ML 
solutions in real-time semiconductor manufacturing environments to enable proactive maintenance, 
predictive analytics, and continuous process improvement. 

 

Materials and Methods 

1. Research Design: 

   - Experimental Design: Conducting empirical studies to evaluate the effectiveness of AI and machine 
learning algorithms in defect detection and yield improvement. 

   - Case Studies: Analyzing specific semiconductor manufacturing facilities implementing AI/ML for 
defect detection and yield enhancement. 

 

2. Data Collection: 

   - Data Sources: Collecting real-time and historical data from semiconductor manufacturing processes, 
including defect images, process parameters, yield rates, and quality metrics. 

   - Tools and Techniques: Utilizing sensors, imaging systems, and data logging tools to capture relevant 
data points. 

 

3. AI and Machine Learning Models: 

   - Model Selection: Choosing appropriate AI and ML algorithms such as deep learning models (e.g., 
CNNs, RNNs), supervised and unsupervised learning techniques, and anomaly detection algorithms. 

   - Training and Validation: Training models using collected data and validating their performance 
through cross-validation and testing on independent datasets. 

 

4. Implementation Strategy: 
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   - Integration Plan: Designing a framework for integrating AI/ML models into existing semiconductor 
manufacturing processes. 

   - Deployment:  Implementing AI-driven defect detection systems on manufacturing lines, ensuring 
compatibility with existing hardware and software infrastructures. 

 

5. Evaluation Metrics: 

   - Performance Metrics: Assessing the efficacy of AI/ML models based on metrics such as accuracy of 
defect detection, false positive rates, yield improvement percentages, and throughput enhancement. 

   - Comparison: Comparing results with traditional methods to demonstrate the superiority of AI/ML 
approaches. 

 

6. Ethical Considerations: 

   - Privacy and Security: Ensuring data privacy and security protocols are adhered to during data 
collection, processing, and storage. 

   - Bias and Fairness: Mitigating biases in AI models to ensure fair and unbiased defect detection 
outcomes. 

 

7. Analysis and Interpretation: 

   - Statistical Analysis: Conducting statistical tests to validate the significance of results obtained from 
AI/ML models. 

   - Interpretation: Interpreting findings to draw conclusions about the impact of AI and ML on defect 
detection and yield improvement in semiconductor manufacturing. 

 

 

 

 

Literature Review 

 
In semiconductor manufacturing, the integration of AI and machine learning plays a crucial role in defect 
detection and yield improvement. Various studies have highlighted the significance of utilizing deep 
learning algorithms for defect classification, such as in the automatic classification of random, systematic, 
and parametric defects to enhance efficiency and productivity [2]. Additionally, the use of convolutional 
neural networks (CNN) has been proposed for accurately categorizing semiconductor wafer faults, 
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achieving high accuracy rates and low misclassification rates, ultimately contributing to increased yield 
[4] [5]. Moreover, the application of knowledge augmented broad learning systems has shown 
effectiveness in decoupling mixed-type defects, providing insights for product quality improvement in 
intelligent manufacturing systems [3]. By leveraging AI and machine learning techniques, semiconductor 
manufacturers can streamline defect detection processes, shorten development periods, and ultimately 
improve overall yield in the industry. 

 

 

 

Theoretical Framework 

In the semiconductor industry, optimizing yield has become crucial for enhancing cost efficiency and 
maintaining competitive edge, especially as integrated circuit complexity accelerates in the post-Moore 
era. Even marginal improvements in yield can yield substantial financial benefits, with a mere 1% 
increase potentially translating into an additional $150 million in net profit in advanced logic wafer fabs. 
To address these challenges, machine learning (ML) has emerged as a pivotal tool for augmenting yield 
enhancement strategies. ML techniques such as feature selection, data mining for process optimization, 
clustering algorithms for anomaly detection, and automatic defect classification have been increasingly 
deployed. 

 

However, the adoption of ML in semiconductor smart manufacturing (SSM) poses challenges due to the 
specialized expertise required for development and deployment. This expertise gap impedes rapid 
integration and responsiveness in optimizing semiconductor manufacturing processes. There is an 
ongoing effort to develop agile strategies to adapt to changing conditions, improve product yields, and 
optimize resource utilization for intelligent and efficient operations. 

 

Automated machine learning (AutoML) has emerged as a promising solution to streamline and automate 
yield enhancement processes, aiming to deliver reliable solutions with minimal human intervention and 
computational resources. Moreover, AutoML is expected to drive the evolution of manufacturing 
architectures towards integrated networks of autonomous systems capable of self-adaptation, self-
configuration, and self-optimization. However, deploying AutoML in semiconductor manufacturing 
encounters inherent challenges: existing models are often designed as general-purpose systems and lack 
the nuanced response capabilities required for semiconductor-specific issues. Additionally, the black box 
nature of AutoML models hinders explainability, which is critical for understanding model outputs and 
identifying the root causes of low yield. 
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Given these challenges, this study proposes an explainable AutoML (xAutoML) framework tailored for 
semiconductor manufacturing. xAutoML integrates targeted countermeasures and prominent explainable 
methods to enhance transparency and reliability in yield enhancement processes within SSM. This 
approach aims to provide clear explanations for model decisions, thereby improving trust and facilitating 
informed decision-making in manufacturing operations. 

 

Related Works 

 

In semiconductor manufacturing, enhancing yield through machine learning presents unique challenges 
compared to other industries [4], [31]. These challenges include: 

 

1. Random Sampling in Measurement: Semiconductor manufacturing often involves random sampling 
during measurements, resulting in incomplete data for certain process steps. This limits the ability to 
explore correlations fully and obtain sufficient information. 

 

2. Concept Drift: Manufacturing process data is typically in the form of data streams where the 
underlying probability distribution can change over time due to subtle variations in the process. This 
phenomenon, known as concept drift, complicates the stability and predictability of models. 

 

3. Small Number of Low Yield Dies: Failure instances, where dies do not meet quality standards, are 
relatively rare, constituting only a small percentage (around 2%) of total production. Consequently, the 
number of samples representing failure cases is limited, posing challenges for model training and 
robustness. 

 

4. High Rate of Missing Values: Sensor faults, data storage issues, and communication errors frequently 
lead to missing data in semiconductor manufacturing processes. This results in reduced yield, 
compromised product quality, and decreased productivity. 

 

Addressing these complexities is crucial for developing effective machine learning solutions tailored to 
yield enhancement in semiconductor smart manufacturing. The next sections will explore methodologies 
and strategies to mitigate these challenges and optimize yield through advanced ML techniques. 
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Explainability for AutoML 

 

As the use of black-box models becomes more prevalent in making critical predictions for yield 
enhancement in semiconductor smart manufacturing (SSM), the demand for explainability is growing. 
However, consensus on the required level of explainability has not been universally established [22], [55]. 
Generally, explainability aims to ensure that the system's decisions and reasoning are comprehensible to 
humans [47], [48]. This objective is central to developing a reliable xAutoML system. To achieve this 
goal, the following mainstream explainable methods are integrated to construct an understandable 
xAutoML pipeline [23], [33]: 

 

1. Importance Analysis of Hyperparameters and Features: Evaluates which hyperparameters and features 
globally contribute most to enhancing the performance of ML systems [32]. 

 

2. Automated Ablation Study (AAS): Assesses the importance of changes made to achieve observed 
performance improvements compared to the original configuration when an AutoML tool starts with a 
predefined setup (e.g., new loss function or features) [34]. 

 

3. Visualization of Hyperparameter Effects: Visualizes the impact of locally and globally altering 
hyperparameter settings [35]. 

 

4. Visualization of Sampling and Optimization Processes: Illustrates which areas of the configuration 
space an AutoML tool samples and the expected performance outcomes [36]. Through comprehensive 
visualization and analysis of all elements (e.g., features, hyperparameters) and the optimization process, 
the entire AutoML pipeline aims for visual clarity, adaptability, optimized configuration, and improved 
performance efficiency. 

 

Feature Selection Methods 

 

Modern wafer fabs generate trillions of production records and billions of daily data increments, 
amounting to petabyte-level data volumes rich in signal features. However, not all features are equally 
valuable in specific semiconductor monitoring systems. Original features often contain a mix of irrelevant 
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and useful information, leading to significant time costs and inaccurate evaluations [45]. Therefore, 
feature selection is crucial to identify key components in the process and pivotal factors influencing the 
response variable. Nevertheless, different selection algorithms may yield widely varying predictions of 
important features due to slight changes in data distribution or feature relevance, rendering results model-
specific and potentially inaccurate [21]. Key challenges include the Rashomon effect, where features' 
importance varies across models, and the difficulty in iteratively or simultaneously tuning features and 
model performance due to their interdependence. 

 

Class Imbalance 

 

In semiconductor manufacturing data, failure samples (minority class) are significantly outnumbered by 
normal samples (majority class), as discussed in Section II.A. This disparity in class occurrences, termed 
class imbalance, poses challenges. Misclassifying failure samples as normal incurs substantial 
misclassification costs [42]. Addressing class imbalance in AutoML is complex because algorithms 
typically optimize globally, potentially biasing towards the majority class and thereby misclassifying the 
minority class. 
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Analysis 

 

Data 

 

For this study, the SECOM dataset from a contemporary semiconductor manufacturing process was 
employed, accessible through the UCI machine learning repository and collected via monitoring 
signals/variables from sensors and process measurement points [58]. The SECOM dataset presents a real-
world challenge characterized by complexity, high dimensionality, and significant class imbalance. It 
comprises 1,567 samples, each featuring 590 digital attributes. Initial data analysis revealed 41,951 
missing entries and 347 feature columns with variance < 1, encompassing 58.6% of the dataset. Among 
these, 116 columns were identified as redundant due to constant values. The dataset includes labels where 
"1" indicates a defective product and "-1" signifies a qualified product. Specifically, there are 104 
defective samples and 1,463 normal samples, resulting in a high data imbalance ratio of 14:1. 
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Advanced feature mining methods based on domain knowledge were applied to extract 
information and underlying patterns from the original features. Through the identification of periodic 
distributions of missing values, four unit processes comprising 128 sub
Consequently, over 60,000 features were compreh
SECOM, representing nearly two orders of magnitude increase. These extracted features serve as a 
foundation for engineers to conduct detailed investigations into process control and capability analysis, 
providing essential insights for improving model performance, as detailed in Section IV.B.

 

Model-Agnostic Key Feature Selection by CAST

 

The Complex and High-Dimensional feature selection Tool (CAST) was developed to identify model
agnostic key features from the extracted dataset. These features are crucial in enabling experts to discern 
pivotal factors influencing yield deviations downstream and aid in decision
employing these features include enhanced explainability, simplif
and improved generalization capabilities. The adoption of CAST ensures independence from specific 
models, resulting in more accurate, effective, and understandable feature selection compared to 
conventional algorithms. 

 

Weighted Selection for Model-Agnostic Features

 

Figure 2(a) illustrates the hyperparameter optimization process (e.g., Wa, Fs), where the model adjusts its 
search strategy iteratively, leading to continuous improvement in training effectiveness. The performance 
steadily increases with each iteration unt
of the normalized weight proportions corresponding to the selection algorithm's current optimal 
performance. 

 

Advanced feature mining methods based on domain knowledge were applied to extract 
information and underlying patterns from the original features. Through the identification of periodic 
distributions of missing values, four unit processes comprising 128 sub-processes were defined. 
Consequently, over 60,000 features were comprehensively extracted from the original 590 features in 
SECOM, representing nearly two orders of magnitude increase. These extracted features serve as a 
foundation for engineers to conduct detailed investigations into process control and capability analysis, 
providing essential insights for improving model performance, as detailed in Section IV.B.
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Optimization Performance of HPO Algorithms

 

To illustrate the efficacy of our Hyperparameter Optimization (HPO) algorithm, we conducted a 
comparative analysis with various methods, as depicted in Fig. 5. Among these, Bayesian Optimization 
and HyperBand (BOHB) exhibit notable superiority. BOHB consistently outperfor
throughout the optimization process, achieving a global performance ranking of 92.89%. HyperBand 
follows closely with 92.71%, while Tree
achieve 92.33% and 91.86%, respectively.

 

 

In addition to superior performance, BOHB demonstrates efficiency in finding the optimal solution more 
swiftly than its counterparts. The number of iterations required to reach local optimal performance for 
each HPO algorithm ranks as follows: Random Sample
HyperBand (101 iterations) > BOHB (91 iterations). This efficiency highlights BOHB's capability to 
achieve superior results with fewer iterations, underscoring the robustness and effectiveness of our 
optimization approach. 

4023 (Online), Journal of Artificial Intelligence General Science (JAIGS)  

Discussions 

Performance of HPO Algorithms 

e efficacy of our Hyperparameter Optimization (HPO) algorithm, we conducted a 
comparative analysis with various methods, as depicted in Fig. 5. Among these, Bayesian Optimization 
and HyperBand (BOHB) exhibit notable superiority. BOHB consistently outperforms other algorithms 
throughout the optimization process, achieving a global performance ranking of 92.89%. HyperBand 
follows closely with 92.71%, while Tree-structured Parzen Estimator (TPE) and Random Sampler 
achieve 92.33% and 91.86%, respectively. 

n addition to superior performance, BOHB demonstrates efficiency in finding the optimal solution more 
swiftly than its counterparts. The number of iterations required to reach local optimal performance for 
each HPO algorithm ranks as follows: Random Sampler (150 iterations) > TPE (116 iterations) > 
HyperBand (101 iterations) > BOHB (91 iterations). This efficiency highlights BOHB's capability to 
achieve superior results with fewer iterations, underscoring the robustness and effectiveness of our 
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Conclusion 

Due to the complexity and criticality of semiconductor manufacturing processes, the integration of 
Artificial Intelligence (AI) and Machine Learning (ML) techniques has emerged as a transformative 
approach for defect detection and yield improvement. This paper has explored various facets of this 
integration, emphasizing its potential to address the challenges posed by high-dimensional data, class 
imbalances, and dynamic process environments. 

 

Throughout this study, it has become evident that AI and ML play pivotal roles in enhancing yield rates 
by analyzing critical process steps, facilitating troubleshooting, and automating defect classification. 
These technologies enable semiconductor fabs to achieve significant cost reductions and improve overall 
operational efficiency. Moreover, the application of automated machine learning (AutoML) frameworks, 
tailored to semiconductor manufacturing, has shown promise in optimizing model performance with 
minimal human intervention. 

 

Key contributions of this research include the proposal of a domain-specific AutoML framework aimed at 
enhancing yield rates effectively and efficiently. By leveraging explainable AI techniques, such as feature 
importance analysis and visualization of optimization processes, the reliability and interpretability of ML 
models in semiconductor manufacturing have been enhanced. 

 

Looking ahead, the evolution of smart manufacturing architectures towards autonomous systems capable 
of self-adaptation and self-optimization represents the next frontier. However, challenges remain, 
particularly in adapting general-purpose AI models to specialized semiconductor domain issues and 
ensuring transparency in model outputs. 

 

In conclusion, the integration of AI and ML in semiconductor manufacturing holds immense potential to 
revolutionize defect detection and yield improvement processes. Continued research and development in 
this area will be crucial to overcoming existing challenges and realizing the full benefits of intelligent 
manufacturing in the semiconductor industry. 
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